Combining Automatic and Manual Approaches: Towards a Framework for Discovering Themes in Disaster-related Tweets
نویسندگان
چکیده
In this paper, we present a framework that combines automatic and manual approaches to discover themes in disaster-related tweets. As case study, we decided to focus on tweets related to typhoon Haiyan, which caused billions of dollars in damages. We collected tweets from November 2013 to March 2014 and used the local typhoon name “Yolanda” as the filter. Data association was used to expand the tweet set and k-means clustering was then applied. Clusters with high number of instances were subjected to open coding for labeling. The Silhouette indices ranged from 0.27 to 0.50. Analyses reveal that the use of automated Natural Language Processing (NLP) approach has the potential to deal with huge volumes of tweets by clustering frequently occurring words and phrases. This complements the manual approach to surface themes from a more manageable set of tweet pool, allowing for a more nuanced analysis of tweets from a human expert. As application, the themes identified during open coding were used as labels to train a classifier system. Future work could explore on using topic models and focusing on specific content or issues, such as natural calamities and citizen’s participation in addressing these.
منابع مشابه
A review of text mining approaches and their function in discovering and extracting a topic
Background and aim: Four text mining methods are examined and focused on understanding and identifying their properties and limitations in subject discovery. Methodology: The study is an analytical review of the literature of text mining and topic modeling. Findings: LSA could be used to classify specific and unique topics in documents that address only a single topic. The other three text min...
متن کاملReactions on Twitter to updated alcohol guidelines in the UK: a content analysis
OBJECTIVES In January 2016, the 4 UK Chief Medical Officers released a public consultation regarding updated guidelines for low-risk alcohol consumption. This study aimed to assess responses to the updated guidelines using comments made on Twitter. METHODS Tweets containing the hashtag #alcoholguidelines made during 1 week following the announcement of the updated guidelines were retrieved us...
متن کاملAn Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors
Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملThematically Analysing Social Network Content During Disasters Through the Lens of the Disaster Management Lifecycle
Social Networks such as Twitter are often used for disseminating and collecting information during natural disasters. The potential for its use in Disaster Management has been acknowledged. However, more nuanced understanding of the communications that take place on social networks are required to more effectively integrate this information into the processes within disaster management. The typ...
متن کامل